Latest Electronics News & Trends | Expert Insights & Innovations
CIQTEK

CIQTEK and LASystems Exhibit EPR Solutions at SEST 2025, Japan

CIQTEK, together with its Japanese distributor LASystems, participated in the 64th Annual Meeting of the Society of Electron Spin Science and Technology (SEST 2025)held from November 21 to 23, 2025, in Kiryu, Gunma Prefecture, Japan.

 

At the event, CIQTEK and LASystems presented CIQTEK’s comprehensive Electron Paramagnetic Resonance (EPR) product portfolio, including CW EPRBenchtop EPR, and Pulse EPR systems. These instruments are widely recognized for their high sensitivity, excellent field stability, and user-oriented design. They support a broad range of applications in spin chemistry, materials research, catalysis, batteries, and biological radical studies.

 

CIQTEK and LASystems Exhibit EPR Solutions at SEST 2025, Japan

 

During SEST 2025, many researchers visited the booth to learn about CIQTEK’s technical advantages, such as precise magnetic field control, stable microwave frequency performance, flexible variable-temperature configurations, and advanced pulse sequence capabilities. The event provided an opportunity for in-depth discussions on experimental workflows and potential collaborations.

 

CIQTEK has established a strong global presence in the EPR field. More than 200 EPR spectrometers have been delivered to research institutions across Asia, Europe, the Americas, etc. The instruments have supported the publication of over 170 scientific papers, including studies featured in NatureScience, and other leading journals. This growing body of research demonstrates the reliability and scientific value of CIQTEK’s EPR technology.

 

CIQTEK will continue strengthening its partnership with LASystems to bring high-performance EPR solutions and localized support to researchers throughout Japan.

阅读全文......

CIQTEK SEM Study Shows Raised-Ring Electrodes Improve Aluminum Alloy Spot Welding and Electrode Life

Aluminum alloys, prized for their exceptional strength-to-weight ratio, are ideal materials for automotive lightweighting. Resistance spot welding (RSW) remains the mainstream joining method for automotive body manufacturing. However, the high thermal and electrical conductivity of aluminum, combined with its surface oxide layer, requires welding currents far exceeding those used for steel. This accelerates copper electrode wear, leading to unstable weld quality, frequent electrode maintenance, and increased production costs. Extending electrode life while ensuring weld quality has become a critical technological bottleneck in the industry.

 

To address this challenge, Dr. Yang Shanglu's team at Shanghai Institute of Optics and Fine Mechanics conducted an in-depth study using the CIQTEK FESEM SEM5000. They innovatively designed a raised-ring electrode and systematically investigated the effect of ring number (0–4) on electrode morphology, revealing the intrinsic relationship between ring count, crystal defects in the weld nugget, and current distribution. Their results show that increasing the number of raised rings optimizes current distribution, improves thermal input efficiency, enlarges the weld nugget, and significantly extends electrode lifespan. Notably, the raised rings enhance oxide layer penetration, improving current flow while reducing pitting corrosion. This innovative electrode design provides a new technical approach for mitigating electrode wear and lays a theoretical and practical foundation for broader application of aluminum alloy RSW in the automotive industry. The study is published in the Journal of Materials Processing Tech. under the title “Investigating the Influence of Electrode Surface Morphology on Aluminum Alloy Resistance Spot Welding.

CIQTEK SEM: Raised-Ring Electrodes Boost Aluminum Welding

Raised-Ring Electrode Design Breakthrough

Facing the electrode wear challenge, the team approached the problem from electrode morphology. They machined 0 to 4 concentric raised rings on the end face of conventional spherical electrodes, forming a novel Newton Ring electrode (NTR).

 

Figure 1. Surface morphology and cross-sectional profile of the electrodes used in the experimentFigure 1. Surface morphology and cross-sectional profile of the electrodes used in the experiment

 

SEM Analysis Reveals Crystal Defects and Performance Enhancement

How do raised rings influence welding performance? Using the CIQTEK FESEM SEM5000 and EBSD techniques, the team characterized the microstructure of weld nuggets in detail. They found that the raised rings pierce the aluminum oxide layer during welding, optimizing current distribution, influencing heat input, and promoting nugget growth. More importantly, the mechanical interaction between raised rings and molten metal significantly increases the density of crystal defects, such as geometrically necessary dislocations (GNDs) and low-angle grain boundaries (LAGBs), within the weld nugget. Optimal performance was observed with three raised rings (NTR3).

 

Figure 2. EBSD analysis of weld nugget microstructure for NTR0, NTR1, NTR2, NTR3, and NTR4 electrodes

Figure 2. EBSD analysis of weld nugget microstructure for NTR0, NTR1, NTR2, NTR3, and NTR4 electrodes

 

Prolonged Electrode Life

Beyond improving weld quality, the raised-ring electrodes demonstrate outstanding anti-abrasion performance. After a 10-weld lifespan test, the difference in electrode wear was striking.

 

Figure 3. Electrode lifespan for NTR0, NTR1, NTR2, NTR3, and NTR4 electrodesFigure 3. Electrode lifespan for NTR0, NTR1, NTR2, NTR3, and NTR4 electrodes

 

Quantitative Analysis

The NTR0 electrode without raised rings exhibited a wear area of 13.49 million μm².

In comparison, NTR3 and NTR4 electrodes with three and four raised rings reduced wear areas to 4.35 million μm² and 3.98 million μm², representing reductions of 67.8% and 70.5%, respectively.

The raised-ring structure concentrates current along the rings, guiding wear along predetermined paths and preventing random pit expansion, effectively doubling electrode lifespan.

 

Figure 4. Pitting area of NTR0, NTR1, NTR2, NTR3, and NTR4 electrodes after 5 and 10 welds: (a) 5th weld, (b) 10th weldFigure 4. Pitting area of NTR0, NTR1, NTR2, NTR3, and NTR4 electrodes after 5 and 10 welds: (a) 5th weld, (b) 10th weld、

 

Microanalysis of Electrode Pitting

Further SEM analysis of NTR0 electrodes after welding until adhesion to the aluminum sheet revealed a 10 μm-thick intermetallic compound (IMC) layer between the electrode and the sheet. This transition layer consists of two copper-containing sublayers:

Near the electrode: thinner sublayer with 29.2 at.% Cu (Al4Cu9 phase).

Near the aluminum alloy: thicker sublayer with 15.5 at.% Cu (AlCu2 phase).

 

Figure 5. Composition analysis of pitting between the electrode and the sheetFigure 5. Composition analysis of pitting between the electrode and the sheet

 

This study demonstrates that innovative electrode morphology can effectively regulate current distribution, improving weld quality while extending electrode life. CIQTEK FESEM microscope provided indispensable visualization and quantitative evidence of microscopic mechanisms, including crystal defect evolution and electrode pitting, highlighting the critical role of advanced characterization in advancing welding research and industrial applications.

阅读全文......

CIQTEK Electron Microscopes See Rapid Growth in Italy

In the previous year, CIQTEK made significant progress in its European expansion, with Italy standing out as one of the most successful and dynamic markets.

 

CIQTEK SEM Installations Boost Presence in Italy

To date, nearly ten CIQTEK SEM microscopes have been delivered and installed across four regions in Italy, covering a full range of models from field-emission SEMs and advanced tungsten filament SEMs to entry-level SEM solutions. This milestone highlights CIQTEK’s comprehensive product capability and the growing trust of Italian users in its technology and service.

 

CIQTEK FESEM SEM5000 Installation in ItalyCIQTEK FESEM SEM5000 Installed at a Research Institute in Italy

 

CIQTEK Tungsten Filament SEM3200 Installation in ItalyCIQTEK Tungsten Filament SEM3200 Installed at a Research Institute in Italy

 

Italian Researchers Praise CIQTEK SEM Performance

Although CIQTEK is a relatively new brand to many European users, its electron microscopes have quickly earned recognition for their outstanding performance, reliability, and value. Italian customers have given highly positive feedback, highlighting excellent imaging quality, stable system operation, user-friendly software, and strong cost efficiency. They also praised the company’s technical support team for its prompt responses and professional service throughout the installation and training.

 

Media System Lab: CIQTEK’s Trusted Italian Partner

This achievement would not have been possible without the dedication of CIQTEK’s Italian partnerMedia System Lab S.r.l. The team has provided professional and fully Italian-language support, ensuring smooth communication and helping local users fully understand the performance and advantages of CIQTEK electron microscopes.

 

Media System Lab team performing pre-installation testing for the SEMs at its factory in RoveretoMedia System Lab team performing pre-installation testing for the SEMs at its factory in Rovereto

 

Founded in 1998, Media System Lab S.r.l. is a leading Italian partner in electron microscopy, providing comprehensive solutions from compact tabletop SEMs to high-performance FESEM, TEM, and dual-beam FIB systems. With two offices totaling over 1,000 m², including a 400 m² demo laboratory in Rovereto, the team excels in pre-installation assessments, system integration, on-site training, maintenance, and supply of accessories and consumables. Through their MS Academy Lab platform and hands-on sessions, Media System Lab delivers professional training to microscopy experts, ensuring Italian and European laboratories fully realize the performance and advantages of advanced microscopy solutions.

 

Advancing CIQTEK’s Strategic Expansion in Europe

With increasing installations and positive feedback from users, Italy has become a key market that demonstrates CIQTEK’s ability to meet the high expectations of European researchers and industries. Beyond Italy, CIQTEK now has authorized distributors, demo centers, and delivered instruments in the UK, France, Germany, Spain, Portugal, Romania, and other European countries. The company plans to continue expanding its local service and support network, bringing advanced electron microscopy solutions to more laboratories across the continent and strengthening its presence throughout Europe.

阅读全文......

CIQTEK Hosts Italian Partner Media System Lab for Award Ceremony and Strategic Visit

CIQTEK was honored to welcome our esteemed Italian partner, Media System Lab, to CIQTEK for an inspiring visit and strategic collaboration. The visit marked another milestone in the strong partnership between the two companies, highlighting a shared commitment to advancing scientific innovation and excellence.

 

The journey began at CIQTEK Electron Microscopy Factory in Wuxi, where the Media System Lab team was deeply impressed by the scale, precision, and professionalism of CIQTEK’s electron microscopy production and R&D operations. They explored the full manufacturing process, witnessed the craftsmanship behind CIQTEK’s cutting-edge instruments, and gained first-hand insight into the company’s commitment to quality and innovation. Our technical experts also provided in-depth sessions on product knowledge and future development trends, further strengthening mutual understanding and trust.

 

Group photo at the CIQTEK Electron Microscopy FactoryGroup photo at the CIQTEK Electron Microscopy Factory

 

Following the visit to CIQTEK Electron Microscopy Factory, the delegation traveled to CIQTEK's headquarters in Hefei, where both teams engaged in inspiring discussions on market promotion, customer engagement, and long-term strategies for expanding CIQTEK’s presence in Italy. The meetings involved Mr. Will Zhang, Head of the CIQTEK Electron Microscopy Business Group; Mr. Arvin Chen, Head of CIQTEK Overseas Business Group; and Mr. Yao, Head of the CIQTEK FIB PBU, fostering deeper alignment in technical support, service collaboration, and strategic planning.

 

Showing Media System Lab around the CIQTEK Exhibition CenterShowing Media System Lab around the CIQTEK Exhibition Center

 

During the visit, CIQTEK CEO Dr. Yu He presented the "CIQTEK Distinguished Partner Award 2025" to Media System Lab, in recognition of their outstanding achievements, unwavering dedication, and exemplary performance. Over the past year, Media System Lab has played a key role in helping CIQTEK deliver nearly ten electron microscopes to Italian researchers and institutions, driving remarkable sales growth and significantly strengthening CIQTEK's brand presence and reputation in the local market.

 

CIQTEK Distinguished Partner Award 2025 CeremonyCIQTEK Distinguished Partner Award 2025 Ceremony

 

The visit not only celebrated Media System Lab's exceptional contributions but also highlighted CIQTEK's global vision, commitment to excellence, and dedication to empowering partners worldwide. Together, CIQTEK and Media System Lab will continue to expand the reach of CIQTEK’s electron microscopy solutions, enabling more laboratories across Italy, Europe, and beyond to achieve breakthrough research and technological advancements. This collaboration underscores a shared pursuit of scientific progress, innovation, and long-term success in the field of electron microscopy and beyond.

阅读全文......

CIQTEK SEM Enables Breakthrough Solid-State Battery Research by Tsinghua SIGS, Published in Nature

Solid-state lithium metal batteries (SSLMBs) are widely recognized as the next-generation power source for electric vehicles and large-scale energy storage, offering high energy density and excellent safety. However, their commercialization has long been limited by the low ionic conductivity of solid electrolytes and poor interfacial stability at the solid–solid interface between electrodes and electrolytes. Despite significant progress in improving ionic conductivity, interfacial failure under high current density or low-temperature operation remains a major bottleneck.

A research team led by Prof. Feiyu Kang, Prof. Yanbing He, Assoc. Prof. Wei Lü, and Asst. Prof. Tingzheng Hou from the Institute of Materials Research, Tsinghua Shenzhen International Graduate School (SIGS), in collaboration with Prof. Quanhong Yang from Tianjin University, has proposed a novel design concept of a ductile solid electrolyte interphase (SEI) to tackle this challenge. Their study, entitled “A ductile solid electrolyte interphase for solid-state batteries”, was recently published in Nature.

 

CIQTEK SEM Powers Nature-Published Study on Solid-State Batteries

 

CIQTEK FE-SEM Enables High-Resolution Interface Characterization

In this study, the research team utilized the CIQTEK Field Emission Scanning Electron Microscope (SEM4000X) for microstructural characterization of the solid–solid interface. CIQTEK’s FE-SEM provided high-resolution imaging and excellent surface contrast, enabling researchers to precisely observe the morphology evolution and interfacial integrity during electrochemical cycling.

 

CIQTEK SEM Powers Nature-Published Study on Solid-State Batteries

 

Ductile SEI: A New Pathway Beyond the "Strength-Only" Paradigm

Traditional inorganic-rich SEIs, though mechanically stiff, tend to suffer from brittle fracture during cycling, leading to lithium dendrite growth and poor interfacial kinetics. The Tsinghua team broke away from the “strength-only” paradigm by emphasizing “ductility” as a key design criterion for SEI materials. Using the Pugh’s ratio (B/G ≥ 1.75) as an indicator of ductility and AI-assisted screening, they identified silver sulfide (Ag₂S) and silver fluoride (AgF) as promising inorganic components with superior deformability and low lithium-ion diffusion barriers.

Building on this concept, the researchers developed an organic–inorganic composite solid electrolyte containing AgNO₃ additives and Ag/LLZTO (Li₆.₇₅La₃Zr₁.₅Ta₀.₅O₁₂) fillers. During battery operation, an in-situ displacement reaction transformed the brittle Li₂S/LiF SEI components into ductile Ag₂S/AgF layers, forming a gradient “soft-outside, strong-inside” SEI structure. This multi-layered design effectively dissipates interfacial stress, maintains structural integrity under harsh conditions, and promotes uniform lithium deposition.

 

Figure 1. Schematic illustration of the component screening and functional mechanism of the ductile SEI during solid-state battery cycling.Figure 1. Schematic illustration of the component screening and functional mechanism of the ductile SEI during solid-state battery cycling.

 

Figure 2. Structural and compositional analysis of the inorganic-rich ductile SEI.

 

Exceptional Electrochemical Performance

With this ductile SEI, the solid-state batteries demonstrated remarkable electrochemical stability:

  • Over 4,500 hours of stable cycling at 15 mA cm⁻² and 15 mAh cm⁻² at room temperature.

  • Over 7,000 hours of stable cycling at −30 °C under 5 mA cm⁻².

  • Full cells paired with LiNi₀.₈Co₀.₁Mn₀.₁O₂ (NCM811) cathodes exhibited excellent high-rate (20 C) and low-temperature performance.

 

Figure 3. Exceptional plastic deformability and mechanical stability of the inorganic-rich ductile SEI.Figure 3. Exceptional plastic deformability and mechanical stability of the inorganic-rich ductile SEI.

 

A Breakthrough Strategy for Interface Engineering in Solid-State Batteries

This research provides a new theoretical and practical framework for designing ideal SEI structures, marking a significant step toward commercially viable solid-state batteries. By integrating mechanical ductility with high ionic conductivity, the study opens up a new direction in solid-state electrolyte and interfacial material design.


 

Reference:
Kang, F. Y., He, Y. B., Lü, W., Hou, T. Z., Yang, Q. H., et al. (2025). A ductile solid electrolyte interphase for solid-state batteries. Nature.
https://www.nature.com/articles/s41586-025-09675-8

阅读全文......

CIQTEK SEM Solutions Highlighted at the 2nd IESMAT Electron Microscopy Day, Spain

The 2nd IESMAT Electron Microscopy Day was successfully held on November 6, 2025, in Madrid, Spain, bringing together dozens of microscopy experts, researchers, and professionals from Spain and Portugal. The event served as a valuable platform for sharing knowledge, exploring the latest microscopy technologies, and strengthening connections within the Iberian microscopy community.

As CIQTEK’s official partner in Spain and PortugalIESMAT provides localized support and professional service for CIQTEK electron microscopy solutions in the region. This year, the event was also recognized by the Portuguese Society of Microscopy, further expanding its reach and influence among the scientific and industrial communities.

 

During the meeting, IESMAT presented an in-depth introduction to CIQTEK’s electron microscope product portfolio, highlighting advanced features and application advantages of the CIQTEK SEM series. A live demonstration using the CIQTEK Tungsten Filament SEM3200 allowed attendees to experience its high-resolution imaging capabilities and intuitive operation firsthand. The hands-on session sparked active discussions, with many participants engaging directly with IESMAT experts for technical insights and practical guidance.

 

IESMAT Demonstrating the CIQTEK SEM3200IESMAT Demonstrating the CIQTEK SEM3200

 

The event also featured a series of technical presentations and open discussions on microscopy applications across materials science, nanotechnology, and life sciences, reflecting the growing interest and demand for high-performance, user-friendly microscopy tools in the Iberian market.

 

CIQTEK SEM Solutions Featured at IESMAT Electron Microscopy Day

 

Looking ahead, CIQTEK and IESMAT will continue to deepen their collaboration to provide cutting-edge electron microscopy technologiescomprehensive customer support, and training opportunities to researchers and laboratories in Spain and Portugal. Together, they aim to empower scientific discovery and innovation through accessible, high-quality instrumentation.

阅读全文......

JACS Publication | CIQTEK SNVM Enables Discovery of Room-Temperature Ferromagnetism in Semiconducting MnS₂

Researchers from Nanjing University of Science and Technology, led by Prof. Erjun Kan and Assoc. Prof. Yi Wan, together with Prof. Kaiyou Wang’s team at the Institute of Semiconductors, Chinese Academy of Sciences, has achieved a breakthrough in the study of two-dimensional (2D) ferromagnetic semiconductors.

Using the CIQTEK Scanning NV Microscope (SNVM), the team successfully demonstrated room-temperature ferromagnetism in the semiconducting material MnS₂. The findings were published in the Journal of the American Chemical Society (JACS) under the title “Experimental Evidence of Room-Temperature Ferromagnetism in Semiconducting MnS₂.”

 

JACS Publication | CIQTEK SNVM Enables Discovery of Room-Temperature Ferromagnetism in Semiconducting MnS₂https://pubs.acs.org/doi/10.1021/jacs.5c10107

 

Pioneering Discovery in 2D Ferromagnetic Semiconductors

The discovery of 2D ferromagnetic semiconductors has raised great expectations for advancing Moore’s Law and spintronics in memory and computation. However, most explored 2D ferromagnetic semiconductors exhibit Curie temperatures far below room temperature. Despite theoretical predictions of many potential room-temperature 2D ferromagnetic materials, the experimental synthesis of ordered and stable metastable structures remains a formidable challenge.

In this study, the researchers developed a template-assisted chemical vapor deposition (CVD) method to synthesize layered MnS₂ microstructures within a ReS₂ template. High-resolution atomic characterizations revealed that the monolayer MnS₂ microstructure crystallized well in a distorted T-phase. The optical bandgap and temperature-dependent carrier mobility confirmed its semiconducting nature.

By combining vibrating sample magnetometry (VSM)electrical transport measurements, and micro-magnetic imaging using CIQTEK SNVM, the team provided solid experimental evidence of room-temperature ferromagnetism in MnS₂. Electrical transport measurements also revealed an anomalous Hall resistance component in the monolayer samples. Theoretical calculations further indicated that this ferromagnetism originates from short-range Mn–Mn interactions.

This work not only confirms the intrinsic room-temperature ferromagnetism of layered MnS₂ but also proposes an innovative approach for the growth of metastable functional 2D materials.

 

JACS Publication | CIQTEK SNVM Enables Discovery of Room-Temperature Ferromagnetism in Semiconducting MnS₂

 

Two Key Breakthroughs

  • Intrinsic Room-Temperature Ferromagnetism in MnS₂ Monolayers:
    The study experimentally demonstrates intrinsic room-temperature ferromagnetism in semiconducting MnS₂, resolving the long-standing conflict between semiconductivity and magnetism.

  • Template-Assisted CVD Strategy for Metastable Ferromagnetic Microstructures:
    The developed synthesis strategy enables scalable fabrication of metastable ferromagnetic microstructures.

These advances establish MnS₂ as a model platform for 2D spintronics, offering a new pathway for engineering low-dimensional magnetic materials.

 

ChatGPT 说:

Figure 1: Optical and Magnetic Measurements

 

Figure 2: Micro-Region Magnetic Imaging

 

Figure 3: Electrical Transport Measurements

 

CIQTEK SNVM: Key Instrument Behind the Discovery

The CIQTEK Scanning NV Microscope (SNVM) played a crucial role in this research. Its high-precision nanoscale magnetic imaging capabilities were essential for visualizing and confirming the magnetic properties of MnS₂. This study highlights how CIQTEK's advanced scientific instruments are empowering frontier research in materials science and condensed matter physics.

This breakthrough not only drives progress in 2D material studies but also opens new opportunities for spintronics and next-generation memory technologies.

 

Experience CIQTEK SNVM

CIQTEK SNVM is a world-leading nanoscale magnetic field imaging system, offering:

  • Temperature range: 1.8–300 K

  • Vector magnetic field: 9/1/1 T

  • Magnetic spatial resolution: 10 nm

  • Magnetic sensitivity: 2 μT/Hz¹ᐟ²

Based on NV center-based optically detected magnetic resonance (ODMR) and atomic force microscopy (AFM) scanning imaging, the SNVM provides high spatial resolutionhigh magnetic sensitivitymultifunctional detection, and non-invasive measurement.

It is a powerful tool for magnetic domain characterization, antiferromagnetic imaging, superconductivity studies, and 2D magnetic materials research, enabling scientists to explore materials with high precision and confidence.

阅读全文......

Breaking Boundaries CIQTEK Launches the Next-Generation Q-Band EPR Spectrometers

The 15th China Symposium on Electron Paramagnetic Resonance (EPR) Spectroscopy was successfully held at Chongqing University from October 24 to 27, 2025. Nearly one hundred experts, scholars, industry representatives, and graduate students gathered to discuss cutting-edge topics in the EPR field, including new techniques and theories, biological spin labeling, and new energy applications.

 

15th China Symposium on Electron Paramagnetic Resonance (EPR) Spectroscopy

 

Grand Launch: CIQTEK Q-Band EPR Spectrometers Make a Stunning Debut

As a pioneer in paramagnetic resonance technology, CIQTEK officially unveiled its new Q-band EPR spectrometer series — the EPR-Q400 High-Frequency Pulse Spectrometer and the EPR-Q300 Continuous-Wave Spectrometer, marking another significant milestone in high-frequency EPR technology.

Compared with traditional X-band EPRhigh-frequency EPR offers:

  • Higher spectral resolution

  • Stronger orientation selectivity

  • Enhanced sensitivity

Making it a powerful tool for biomacromolecular structure studiesspin dynamics research, and materials science applications.

 

Dr. Richard Shi from CIQTEK Introduces the Q-Band EPR Instruments at the MeetingDr. Richard Shi from CIQTEK Introduces the New Q-Band EPR Instruments at the Meeting

 

Flagship Model: EPR-Q400 High-Frequency Pulse Spectrometer

The EPR-Q400, the flagship model of this release, supports both CW and pulsed EPR measurements, meeting a wide range of research demands. It enables variable-temperature experiments from 4 K to 300 K, providing flexible and precise experimental conditions.

Notably, the Q-band spectrometer adopts the same software platform as CIQTEK X-band EPR systems, greatly reducing the learning curve and ensuring a seamless and user-friendly operation experience.

 

Dedicated CW Solution: EPR-Q300 Continuous-Wave Spectrometer

For users focusing solely on continuous-wave EPR experiments, CIQTEK introduced the EPR-Q300, offering a targeted and efficient solution for diverse scientific applications.

 

Continuous Innovation in EPR Technology

This product launch showcases CIQTEK’s robust R&D capabilities and in-depth technical expertise in EPR spectroscopy, thereby further enriching its EPR product portfolio. During the symposium, multiple experts recognized CIQTEK’s responsive and professional technical support, noting that the team not only helps resolve experimental challenges but also actively participates in collaborative research, contributing to high-level scientific achievements.

 

Upcoming Event: CIQTEK Paramagnetic Academy 2026

To further promote academic exchange and talent development in EPR technology, the CIQTEK Paramagnetic Academy Advanced EPR Workshop will be held from July 17 to 27, 2026, in conjunction with the CIQTEK EPR User Symposium.

 

These events will serve as an open platform for technical communication, experience sharing, and application discussions among EPR researchers and users.
Stay tuned for more updates and upcoming event announcements.

阅读全文......

Xi'an Jiaotong University Builds Advanced In-situ Materials Research Platform with CIQTEK Field Emission SEM

Cutting-edge research platform for micro/nanoscale material behavior studies

The Center for Micro/Nanoscale Behavior of Materials at Xi’an Jiaotong University (XJTU) has established a comprehensive in-situ materials performance research platform based on the CIQTEK SEM4000 Field Emission Scanning Electron Microscope (FE-SEM). By integrating multiple in-situ testing systems, the center has achieved remarkable progress in the application of in-situ SEM techniques and advanced materials science research.

 

Leading national research infrastructure

The XJTU Center for Micro/Nanoscale Behavior of Materials focuses on the structure–property relationship of materials at the micro/nanoscale. Since its establishment, the center has published over 410 high-impact papers, including in Nature and Science, demonstrating outstanding scientific output.

The center houses one of the most advanced in-situ materials performance research platforms in China, equipped with large-scale systems such as a Hitachi 300 kV environmental TEM with quantitative nanomechanical–thermal coupling capabilities and an environmental aberration-corrected TEM for atomic-scale in-situ studies of thermo-mechanical-gas interactions. Together, these instruments provide powerful technical support for frontier materials research.

 

Efficient and seamless experience with CIQTEK SEM

In 2024, the center introduced the CIQTEK SEM4000 Field Emission Scanning Electron Microscope.
Dr. Fan Chuanwei, equipment manager at the center, remarked:

“The resolution and stability of the CIQTEK SEM4000 perfectly meet our research demands. What impressed us most was the efficiency. It took less than four months from equipment installation to our first paper published using the system, and the entire process from procurement to operation and after-sales was highly efficient.”

 

Regarding customized services, Dr. Fan added:

“For our in-situ SEM experiments, CIQTEK tailored a real-time video recording module and designed customized adapter stages for various in-situ setups. The rapid response and flexibility of the CIQTEK team fully demonstrate their professional expertise.”

 

Integrated in-situ testing capabilities

The SEM4000 platform at XJTU has successfully integrated three core in-situ testing systems, forming a complete in-situ mechanical performance research capability.

  • Bruker Hysitron PI 89 Nanomechanical Test System – Enables nanoindentation, tensile, fracture, fatigue, and mechanical property mapping. It has been extensively used in micro/nanoscale mechanical testing of semiconductor devices, leading to significant results in semiconductor materials research.

  • KW In-situ Tensile Stage – Offers a loading range from 1 N to 5 kN and supports various grips, including standard compression/tension, compact tension, three-point bending, and fiber tensile testing. Combined with SEM imaging, it allows real-time correlation of mechanical data with microstructural evolution, providing critical insights into deformation mechanisms.

  • Custom In-situ Torsion Stage – Developed by Prof. Wei Xueyong’s team at the School of Instrument Science and Engineering, XJTU, this system enables torsional deformation studies under SEM observation, adding a unique capability to the research platform.

 

Xi'an Jiaotong University Builds Advanced In-situ Materials Research Platform with CIQTEK Field Emission SEMCIQTEK Field Emission SEM4000 at Xi'an Jiaotong University

 

Dr. Fan commented:

“The systems are well integrated with the SEM and easy to operate. Our researchers quickly became proficient, and these combined techniques have provided a wealth of valuable experimental data and scientific discoveries.”

 

SEM4000: Designed for in-situ excellence

The outstanding performance of SEM4000 in in-situ studies benefits from its purpose-built engineering design. According to CIQTEK engineers, the large chamber and long-travel stage provide ample space and stability for complex in-situ setups, which is a key advantage over conventional SEMs.

Its modular architecture, featuring 16 flange interfaces, allows flexible customization of vacuum ports and electrical feedthroughs for different in-situ devices. This design makes integration and system expansion remarkably straightforward.

In addition, the integrated in-situ video recording function enables continuous observation and recording of microstructural evolution during experiments, providing crucial data for dynamic process analysis and mechanism exploration.

 

Xi'an Jiaotong University Builds Advanced In-situ Materials Research Platform with CIQTEK Field Emission SEM

 

Continuous innovation for future research

Looking ahead, the XJTU center plans several technology development initiatives based on the SEM4000 platform, reflecting strong confidence in the long-term advancement of CIQTEK scientific instruments.

“We plan to add in-situ heating and EBSD modules for high-temperature and EBSD observations. We also aim to extend our self-developed quantitative in-situ mechanical analysis software, which was originally developed for TEM, to SEM applications. Furthermore, we’re developing an ‘SEM AI Agent’ system to enable automated operation, image acquisition, and data processing through AI assistance,” said Dr. Fan.

“With these continuous improvements, we hope to achieve more breakthroughs in understanding micro/nanoscale material behavior while contributing to the progress and broader adoption of advanced domestic scientific instruments. With CIQTEK’s support, we are confident in realizing these goals.”


 

The collaboration between Xi'an Jiaotong University and CIQTEK demonstrates the strong potential and technological depth of CIQTEK's high-end scientific instruments in frontier research. From the first paper produced within four months to the successful integration of multiple in-situ testing systems, the CIQTEK SEM4000 has proven to be a cornerstone of XJTU’s advanced materials research platform, earning recognition from one of the nation’s leading research institutions.

阅读全文......

\"Nature Materials | Visualizing Graphene Magnetism CIQTEK SNVM Enables a Key Breakthrough in Graphene Spintronics\

A research team led by Prof. Haomin Wang from the Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, has achieved significant progress in studying the magnetism of zigzag graphene nanoribbons (zGNRs) using the CIQTEK Scanning NV Microscope (SNVM).

Building on their previous research, the team fabricated oriented atomic grooves in hexagonal boron nitride (hBN) by pre-etching with metal nanoparticles and synthesized chiral-controlled graphene nanoribbons within these grooves through a vapor-phase catalytic CVD method. The resulting ~9 nm-wide zGNRs embedded in the hBN lattice exhibited intrinsic magnetic properties, which were directly confirmed experimentally for the first time using SNVM combined with magnetic transport measurements.

This groundbreaking work lays a solid foundation for developing graphene-based spintronic devices. The study, titled “Signatures of magnetism in zigzag graphene nanoribbons embedded in a hexagonal boron nitride lattice”, was published in the renowned journal Nature Materials.

 

Graphene Magnetism Revealed with CIQTEK SNVM in Nature MaterialsGraphene Magnetism Revealed with CIQTEK SNVM in Nature Materialshttps://doi.org/10.1038/s41563-025-02317-4


Understanding Graphene Magnetism

Graphene, as a unique two-dimensional material, exhibits p-orbital electron magnetism that differs fundamentally from the localized d/f orbital magnetism found in conventional materials. This distinction opens new directions for exploring carbon-based quantum magnetism. Zigzag graphene nanoribbons (zGNRs) are particularly promising for spintronic applications because of their predicted magnetic electronic states near the Fermi level. However, detecting zGNR magnetism through electrical transport measurements has remained highly challenging.

The main difficulties include the limited length of bottom-up synthesized nanoribbons, which complicates device fabrication, and the chemically reactive edges that lead to instability or inhomogeneous doping. Furthermore, in narrow zGNRs, strong antiferromagnetic coupling between edge states makes it difficult to electrically detect magnetic signals. These challenges have hindered direct observation of intrinsic magnetism in zGNRs.

 

SNVM Reveals Magnetic Signals at Room Temperature

Embedding zGNRs within an hBN lattice enhances edge stability and introduces built-in electric fields, providing an ideal environment for studying magnetism. Using CIQTEK’s room-temperature SNVM, the researchers directly visualized magnetic signals in zGNRs for the first time under ambient conditions.

 

Figure 1. Magnetic measurement of zGNRs embedded in a hexagonal boron nitride lattice using the Scanning NV Microscope

Figure 1. Magnetic measurement of zGNRs embedded in a hexagonal boron nitride lattice using the Scanning NV Microscope

 

In electrical transport measurements, the ~9 nm-wide zGNR transistors demonstrated high conductivity and ballistic transport behavior. Under magnetic fields, the devices showed pronounced anisotropic magnetoresistance, with resistance changes up to 175 Ω and a magnetoresistance ratio of approximately 1.3% at 4 K, which persisted up to 350 K. Magnetic hysteresis appeared only when the magnetic field was applied perpendicular to the zGNR plane, confirming magnetic anisotropy. Analysis of the angular dependence of magnetoresistance indicated that the magnetic moments were oriented normal to the sample surface. The decrease in magnetoresistance with increasing source-drain bias and temperature revealed interactions between magnetic response, charge transport, and thermal vibrations.

 

Figure 2. Magnetic transport characteristics of a 9 nm-wide zGNR device embedded in hBN

Figure 2. Magnetic transport characteristics of a 9 nm-wide zGNR device embedded in hBN

 

By combining SNVM imaging with transport characterization, this study provides the first direct evidence of intrinsic magnetism in zGNRs embedded in hBN and demonstrates the potential for electric-field control of magnetic behavior. This work deepens the understanding of graphene magnetism and opens new opportunities for developing graphene-based spintronic devices.

 

Experience Nanoscale Magnetic Imaging with CIQTEK SNVM

CIQTEK invites researchers to experience the Scanning NV Microscope (SNVM), a world-leading nanoscale magnetic imaging system featuring a temperature range of 1.8–300 K, a 9/1/1 T vector magnetic field, 10 nm magnetic spatial resolution, and 2 μT/Hz¹ᐟ² magnetic sensitivity.

 

CIQTEK Scanning NV MicroscopeCIQTEK SNVM: the ambient version and the cryogenic version

 

The SNVM integrates diamond nitrogen-vacancy (NV) center-based optically detected magnetic resonance (ODMR) with atomic force microscopy (AFM) scanning technology. It offers high spatial resolution, superior magnetic sensitivity, multifunctional detection, and non-invasive imaging capabilities, making it an essential tool for research in magnetic domain characterization, antiferromagnetic imaging, superconductivity studies, and two-dimensional magnetic materials.

阅读全文......