Latest Electronics News & Trends | Expert Insights & Innovations
CIQTEK

CIQTEK Excelled at The 58th ESR Spectroscopy Group Meeting and Gears Up for MMC2025

CIQTEK, in collaboration with its valued partner SciMed, has recently taken the scientific community by storm with its active participation in the 58th Annual International Meeting of the ESR Spectroscopy Group. The event, held at an auspicious time in early June, not only proved to be a massive success but also propelled CIQTEK to new heights with the prestigious poster award it received.

 

The spotlight of the conference was undoubtedly CIQTEK's showcase of the groundbreaking EPR200M, which garnered widespread attention and acclaim from attendees.

This cutting-edge technology not only captured the imaginations of experts in the field but also demonstrated CIQTEK's commitment to innovation and excellence in the realm of spectroscopic instrumentation.

Buoyed by this resounding success, CIQTEK is now setting its sights on the upcoming "Microscience Microscopy Congress 2025 (MMC2025)," scheduled to take place from July 1st to 3rd. Visitors and industry professionals are cordially invited to Booth 131 during the event to experience firsthand the latest advancements and solutions that CIQTEK has to offer. This presents an unparalleled opportunity for networking, collaboration, and knowledge exchange with some of the brightest minds in the scientific community.

 

 

阅读全文......

\"CIQTEK at Microscience Microscopy Congress 2025 in Manchester, Booth 131\

CIQTEK is now setting its sights on the upcoming "Microscience Microscopy Congress 2025 (MMC2025)," scheduled to take place from July 1st to 3rd, in collaboration with its valued partner SciMed.

 

MMC2025, incorporating EMAG 2025, is being held at Manchester Central Convention Complex, located in the heart of Manchester. It is one of the largest events of its kind in Europe, bringing together the very best in microscopy, imaging, and cytometry from around the globe.

 

With six parallel conference sessions, a world-class exhibition, workshops, satellite meetings, an international Imaging Competition, and more, CIQTEK invites conference attendees to visit their booth #131 at the exhibition hall to learn more about their cutting-edge Electron Microscope instruments and solutions. The company's representatives will be available to provide detailed information, answer questions, and explore potential collaborations with researchers, scientists, and industry professionals attending the conference.

 

Meet us at Booth 131

Date: July 1-3, 2025

Location: Manchester Central Convention ComplexUK

 

 

阅读全文......

【Exclusive Interview with the First Author of a Science Paper】Let's Utilize CIQTEK Electron Microscopes!

Recently, the top international academic journal "Science" published a research paper titled "Fatigue of Li metal anode in solid-state batteries" by Professor Wei Luo from Tongji University, along with Professor Yunhui Huang from Huazhong University of Science and Technology and other collaborators.

 

This study revealed for the first time the fatigue failure phenomenon of the lithium metal anode in solid-state batteries, unveiled a new fatigue failure mechanism, and proposed novel strategies to inhibit fatigue failure and enhance the performance of solid-state batteries.

 

In this research, the team utilized the Tungsten Filament SEM from CIQTEK for in-situ SEM fatigue testing and obtained excellent test results.

 

Link to the original paper:

https://www.science.org/doi/10.1126/science.adq6807

 

Recently, the first author of this paper, Professor Bo Chen from Tongji University, was invited to visit CIQTEK and granted an interview with us.

 

Professor Bo Chen introduces: "Our research group mainly focuses on two aspects, one being imaging with synchrotron X-rays, and the other involving electron microscopy imaging, as with CIQTEK. The work of our entire research group revolves around the nano- and micro-structures of materials, particularly in the three-dimensional nano- and micro-structures of materials. Therefore, our entire research group can be referred to as the materials nano- and micro-structure research group."

 

Regarding the paper recently published in "Science," Professor Bo Chen stated: "The paper seized upon a phenomenon that hadn't been extensively considered before, which is the fatigue of lithium metal. Previously, everyone believed that it was electrochemical fatigue generated during charging and discharging processes, but in reality, it also exhibits mechanical fatigue during these processes."

 

"The primary discovery of this research is that lithium exhibits not only electrochemical fatigue during charging and discharging but also mechanical fatigue manifested during these processes, which combined are the main causes of destruction in the lithium metal of solid-state batteries. The paper further suggests that by alloying lithium metal to enhance its physical properties, the lifespan of solid-state batteries can be improved. This is a groundbreaking finding and quite intriguing."

 

When designing experiments, the team observed both types of fatigue by installing fatigue devices on the electron microscope. Since the research group only had one electron microscope, in order to comprehensively observe, they used an in-situ tensile stage developed by Professor Jixue Li at Hangzhou Yuanwei Technology Company. Professor Bo Chen said, "With the help of Professor Li, we jointly created a fatigue tensile-testing device. The mechanical fatigue experiment of lithium metal was conducted by Professor Li using the electron microscope from CIQTEK for in-situ tensile testing."

 

When asked about his views on CIQTEK Electron Microscopes, Professor Bo Chen was very candid and sincere: "For us, our only requirement is that the equipment must perform well."

 

As a research scientist who enjoys hands-on exploration, Professor Bo Chen also shared some personal insights on using CIQTEK instruments. He mentioned that when the instrument offers both quality and cost-effectiveness, it greatly enhances the interest of researchers in tinkering with the machine, reduces the sense of alienation towards expensive instruments, and encourages researchers to utilize the machine more effectively, thereby unleashing more research creativity.

 

Ending with Professor Bo Chen's words, CIQTEK will continue to stick to the slogan: Successful Customers, Successful Companions!

阅读全文......

Synergie4 is currently showcasing CIQTEK's Electron Microscope products at the 2025 E-MRS, France

CIQTEK's French agent, Synergie4, is currently showcasing CIQTEK's Tungsten FilamentsField Emission, and Dual-beam Electron Microscope products at the 2025 E-MRS Meeting and Exhibition. The event is taking place in Strasbourg, France, from May 26 to 30, with their booth located at Booth 27.

 

The E-MRS now boasts a membership of over 4,000 individuals from industry, government, academia, and research laboratories. Their gatherings serve as a platform for discussions on the latest technological advancements in functional materials. Setting themselves apart from many single-discipline professional societies, the E-MRS promotes the exchange of information among scientists, engineers, and research managers on an interdisciplinary level.

 

This participation at the 2025 E-MRS Meeting and Exhibition not only showcases CIQTEK's Electron Microscope products but also underscores their commitment to staying at the forefront of material science and research advancements.

 

Synergie4's presence at this prestigious event highlights the collaborative spirit and dedication to excellence that both CIQTEK and its partners embody in their pursuit of advancing materials science and technology.

阅读全文......

CIQTEK recently delivered an EPR200M apparatus to the Universiteit Utrecht, Netherlands

CIQTEK recently delivered an EPR200M apparatus to the Universiteit Utrecht in the Netherlands. This advanced equipment promises to elevate the esteemed university's research capabilities and enhance its scientific endeavors.

 

In addition to the equipment delivery, CIQTEK went the extra mile by providing on-site installation and training sessions for the university's team. This comprehensive training encompassed the operation of the instrument at various temperature ranges, including ambient, high, and low temperatures. Such hands-on training ensures that the users are equipped with the knowledge and skills to maximize the potential of the EPR200M effectively.

 

Universiteit Utrecht expressed appreciation for CIQTEK's dedication to ensuring a smooth transition and optimal equipment utilization. The university's researchers are eager to leverage the capabilities of the EPR200M to explore new frontiers in their respective fields of study, ranging from chemistry to material science and beyond.

 

This partnership stands as a testament to the mutual pursuit of excellence and progress in the realm of scientific research.

阅读全文......

CIQTEK Delivered EPR200M to the University of Bordeaux, France

CIQTEK recently delivered an EPR200M to the University of Bordeaux, France, in collaboration with CNRS. The instrument was set up on-site, followed by thorough customer training and guidance on sample measurement techniques. This advanced equipment showcases CIQTEK's commitment to providing great solutions in scientific instrumentation.

 

The Benchtop Electron Paramagnetic Resonance EPR200M features the latest technologies, promising precise and accurate results for the University of Bordeaux's research endeavors. This device is equipped with top-tier capabilities and opens new avenues for scientific exploration and experimentation within the university's academic community.

 

 

CIQTEK reaffirms its commitment to empowering academic institutions with advanced scientific instruments and expert guidance through this delivery and on-site training initiative. The collaboration with the University of Bordeaux stands as a testament to the company's dedication to fostering scientific excellence and driving innovation in the academic realm.

阅读全文......

CIQTEK at Microscopy Society of Canada(MSC) 2025

The Microscopy Society of Canada(MSC-SMC) is excited to host the 2025 51st Meeting in Winnipeg! 

 

MSC hosts a series of talks and workshops within the fields of materialslife science, and AI-driven image analysis, incorporating various microscopy techniques, including Light/Fluorescence Microscopy, Electron Microscopy, OM, X-Ray, and AFM. Come to get advice from an expert in AFM, SEM, LSM, etc...

 

CIQTEK invites conference attendees to visit our booth at the exhibition hall to learn more about Scanning Electron Microscope instruments and solutions. The company's representatives will be available to provide detailed information, answer questions, and explore potential collaborations with researchers, scientists, and industry professionals attending the conference.

 

Meet us at MSC

Date: June 9 - 12, 2025

Location: University of Manitoba, Canada

 

 

阅读全文......

Common Misconceptions About SEM

A Scanning Electron Microscope (SEM) is a powerful microscope that uses a high-energy electron beam to scan the surface of a specimen, capturing signals emitted or scattered by electrons to generate high-resolution images of the specimen surface. SEM can magnify images by thousands to tens of thousands of times, revealing a microscopic world that is imperceptible to the naked eye.

 

Under the CIQTEK Scanning Electron Microscope, we can observe the fine textile structure of lizard skin cells, which allows for a visual examination of the structural characteristics of crystalline plates in the skin, such as their size, length, and arrangement. These images not only provide a visual feast but also offer crucial clues for scientists to interpret material properties, disease mechanisms, and biological tissue functions.


Figures1. Ultrastructure of lizard skin/30 kV/STEM

In the field of electron science, SEM helps engineers examine tiny solder joints and conductors on circuit boards in detail to ensure the precision and reliability of technology. In materials science, SEM can be used to analyze fracture surfaces of metal alloys, optimizing industrial design and processing technology. In biological applications, SEM can display the surface structure of bacteria and even observe interactions between viruses and host cells.

 

Figures2SEM3200/Ordinary chip2/10 kV/ETD

SEM is not just a machine; it is more like a meticulous detective that helps us uncover the microscopic secrets in nature and man-made objects, providing strong support for scientific research and technological innovation. Through SEM, scientists can better understand the nature of materials, the structure of biological tissues, and the essence of various complex phenomena, pushing the boundaries of our knowledge forward.

 

Common Misconceptions about SEM:

 

1. Are SEM images in true colors?

 

SEM produces black and white images because they result from the interaction of electrons with the specimen, not from light waves. The colored SEM images typically seen are post-processed using digital coloring techniques to distinguish different structures or enhance visual effects.

 

2. Is higher magnification always better?

 

While SEM can provide extremely high magnification, not all research requires maximum magnification. Excessive magnification beyond the specimen's feature scale not only increases scanning time but may also lead to an increase in irrelevant information.

 

3. Can SEM see atoms?

 

Although SEM offers high resolution, it often cannot reach the level of observing individual atoms. To observe structures at the atomic scale, transmission electron microscopes (TEM) or scanning tunneling microscopes (STM) are typically needed.

 

4. Is SEM only suitable for solid and lifeless specimens?

 

While SEM was initially designed for solid materials, modern techniques allow observation of biological specimens as well. Through specific specimen treatments such as freezing, drying, or coating with conductive materials, SEM can also be used to observe biological tissues and cells.

 

5. Can SEM images fully represent the actual conditions of a specimen?

 

SEM images are two-dimensional projections obtained from specific angles and parameters, which may not fully reveal the three-dimensional structure and true conditions of the specimen. Additionally, the specimen preparation process may cause deformations or artifacts that can affect the accuracy of the results.

 

阅读全文......

USTC Team《AM》 | CIQTEK SEM Assists in The Microscopic Morphology Analysis of Potassium Metal Anode

 

 

Professor Yan Yu's team at USTC utilized the CIQTEK Scanning Electron Microscope SEM3200 to study the post-cycling morphology. It developed amorphous carbon with controllable defects as a candidate material for an artificial interface layer balancing potassiophilicity and catalytic activity.

 

The research team prepared a series of carbon materials with different degrees of defects (designated as SC-X, where X represents the carbonization temperature) by regulating the carbonization temperature. The study found that SC-800 with excessive defects caused substantial electrolyte decomposition, resulting in an uneven SEI film and shortened cycle life. SC-2300, with the fewest defects, had insufficient affinity for potassium and easily induced potassium dendritic growth. SC-1600, which possessed a locally ordered carbon layer, exhibited an optimized defect structure, achieving the best balance between potassiophilicity and catalytic activity. It could regulate the electrolyte decomposition and form a dense and uniform SEI film.

 

The experimental results demonstrated that SC-1600@K exhibited long-term cycle stability for up to 2000 hours under a current density of 0.5 mA cm-2 and a capacity of 0.5 mAh cm-2. Even under higher current density (1 mA cm-2) and capacity (1 mAh cm-2), it maintained excellent electrochemical performance with stable cycles exceeding 1300 hours. In full-cell testing, when paired with a PTCDA positive electrode, it maintained 78% capacity retention after 1500 cycles at a current density of 1 A/g, demonstrating outstanding cycle stability.

 

This research, titled "Balancing Potassiophilicity and Catalytic Activity of Artificial Interface Layer for Dendrite-Free Sodium/Potassium Metal Batteries," was published in Advanced Materials.

Figure 1: The microstructure analysis results of carbon samples (SC-800, SC-1600, and SC-2300) prepared at different carbonization temperatures are presented. Through techniques such as X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and wide-angle X-ray scattering (WAXS), the crystal structure, defect level, and oxygen and nitrogen doping of these samples were analyzed. The results showed that as the carbonization temperature increased, the defects in the carbon materials gradually decreased, and the crystal structure became more orderly.

 

Figure 2: The current density distribution during potassium metal growth on different composite negative electrodes was analyzed using finite element simulation. The simulation results showed that the SC-1600@K composite electrode exhibited a uniform current distribution during potassium deposition, which helped suppress dendritic growth effectively. Additionally, the Young's modulus of the SEI layer was measured using atomic force microscopy (AFM), and the results showed that the SEI layer on the SC-1600@K electrode had a higher modulus, indicating its stronger firmness and inhibition of dendritic formation.

 

Figure 3: The electrochemical performance of different composite electrodes (SC-800@K, SC-1600@K, and SC-2300@K) in symmetrical cells is presented. The SC-1600@K electrode exhibited excellent cycle stability and low overpotential at different current densities and capacities. Furthermore, electrochemical impedance spectroscopy (EIS) and Sand's time testing further confirmed the advantages of the SC-1600@K electrode in suppressing dendritic growth and maintaining SEI layer stability.

 

Figure 4: The structure and composition of the SEI layer on different composite negative electrodes were analyzed using cryogenic transmission electron microscopy (Cryo-TEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed that the SC-1600@K electrode had a uniform, thin, and inorganic-rich SEI layer, facilitating fast potassium ion transport kinetics and high Young's modulus. The SEI layers on the SC-800@K and SC-2300@K electrodes exhibited thicker and organic-rich characteristics.

 

Figure 5: The effects of defect configuration in the carbon layer on potassium ion deposition and SEI formation were explored using density functional theory (DFT) calculations. The results showed that an appropriate amount of defects could enhance the interaction between potassium ions and the carbon layer, reducing the nucleation overpotential, while excessive defects could lead to excessive electrolyte decomposition.

 

Figure 6: The electrochemical performance of a full cell (PTCDA//SC-1600@K) assembled using the SC-1600@K electrode is presented. This cell exhibited excellent rate performance and long-term cycle stability at different current densities, demonstrating the potential of the SC-1600@K electrode in practical battery applications.

 

In conclusion, the research team successfully designed and prepared a carbon material (SC-1600) with a locally ordered structure, serving as an artificial interface layer for sodium/potassium metal battery negative electrodes. By precisely controlling the defect content of the material, the team achieved the optimal balance between potassiophilicity and catalytic activity, significantly improving the uniform deposition of potassium ions and promoting the formation of a stable SEI layer. In a potassium symmetrical cell based on SC-1600 in a carbonate electrolyte system, SC-1600@K exhibited excellent cycle stability with a cycle life exceeding 2000 hours. Notably, a full cell assembled with the SC-1600@K negative electrode and PTCDA positive electrode maintained 78% capacity retention after 1500 cycles at a high current density of 1 A/g. This research not only established a model system for optimizing the SEI structure and potassium ion adsorption by controlling the interfacial layer defects but also provided important theoretical guidance and a technological pathway for the rational design of protective interfacial layers in potassium metal batteries.

阅读全文......

Application of EBSD in SEM

Electron Backscatter Diffraction (EBSD) is a widely used microscopy technique in material science. It analyzes the angles and phase differences of the backscattered electrons produced when a sample interacts with a high-energy electron beam to determine key characteristics such as crystal structure and grain orientation. Compared to a traditional Scanning Electron Microscope (SEM), EBSD provides higher spatial resolution and can obtain crystallographic data at the sub-micrometer level, offering unprecedented details for analyzing material microstructures.

 

Characteristics of the EBSD Technique

 

EBSD combines the microanalysis capabilities of Transmission Electron Microscope (TEM) and the large-area statistical analysis capabilities of X-ray diffraction. EBSD is known for its high-precision crystal structure analysis, fast data processing, simple sample preparation process, and the ability to combine crystallographic information with microstructural morphology in material science research. SEM equipped with an EBSD system not only provides micro-morphology and composition information but also enables microscopic orientation analysis, greatly facilitating the work of researchers.

 

Application of EBSD in SEM

 

In SEM, when an electron beam interacts with the sample, various effects are generated, including the diffraction of electrons on regularly arranged crystal lattice planes. These diffractions form a "Kikuchi pattern," which not only contains information about the symmetry of the crystal system but also directly corresponds to the angle between crystal planes and crystallographic axes, with a direct relationship to the crystal system type and lattice parameters. This data can be used to identify crystal phases using the EBSD technique, and for known crystal phases, the orientation of the Kikuchi pattern directly corresponds to the orientation of the crystal.

 

EBSD System Components

 

To perform EBSD analysis, a set of equipment including a Scanning Electron Microscope and an EBSD system is required. The core of the system is the SEM, which produces a high-energy electron beam and focuses it on the sample surface. The hardware part of the EBSD system usually includes a sensitive CCD camera and an image processing system. The CCD camera is used to capture the backscattered electron images, and the image processing system is used to perform pattern averaging and background subtraction to extract clear Kikuchi patterns.

 

Operation of the EBSD Detector

 

Obtaining EBSD Kikuchi patterns in SEM is relatively simple. The sample is tilted at a high angle relative to the incident electron beam to enhance the backscattered signal, which is then received by a fluorescent screen connected to a CCD camera. The EBSD can be observed directly or after amplification and storage of the images. Software programs can calibrate the patterns to obtain crystallographic information. Modern EBSD systems can achieve high-speed measurements and can be used in conjunction with Energy-Dispersive X-ray Spectroscopy (EDS) probes to perform compositional analysis while rapidly obtaining sample orientation information.

 

Sample Preparation Principles

 

For effective EBSD analysis, sample preparation needs to follow certain principles, including the absence of residual stress, a flat surface (mechanical polishing), cleanliness, suitable shape and size, and good conductivity. The sample preparation process may involve ion etching, polishing, and other steps to ensure that the sample surface is suitable for EBSD analysis.

 

EBSD Calibration and Surface Scanning

 

Calibration is a critical step in the EBSD analysis process, ensuring an accurate correspondence between the Kikuchi patterns and crystallographic parameters. Surface scanning is another important application of EBSD technology, allowing researchers to perform extensive crystallographic analysis on the sample surface, thereby obtaining a comprehensive view of the material's microstructure.

 

阅读全文......